Determine whether a triangle can be built from a given set of edges.
A zero-indexed array A consisting of N integers is given.
A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
A[P] + A[Q] > A[R],
A[Q] + A[R] > A[P],
A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5
A[3] = 1 A[4] = 8 A[5] = 20
Triplet (0, 2, 4) is triangular.
Write a function:
def solution(A)
that, given a zero-indexed array A consisting of N integers,
returns 1 if there exists a triangular triplet for this array and returns 0 otherwise.
For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5
A[3] = 1 A[4] = 8 A[5] = 20
the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5
A[3] = 1
the function should return 0.
Assume that:
N is an integer within the range [0..100,000];
each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
方法一:使用任兩邊大於第三邊的簡易判斷方法
Correctness:100%、Performance:100%
```python A = sorted(A) for i in range(0, len(A)-2): if(A[i] + A[i+1] > A[i+2]): return 1 return 0 ```
完整練習題 source code 請參閱:github
沒有留言:
張貼留言